Sunsea Small Cell Cases

Application Scenario 1 - Indoor Hot Spot and Blind Spot

Application scenario

Small indoor scenarios such as homes, offices, hotels, conference rooms.

Application features

The deployment of integrated small cell can make full use of existing broadband resources for flexible access with its own capacity. It can effectively meet requirements of indoor data, voice complaints and indoor accurate blindness coverage.

Application products

Sunlight 1000, Sunlight 2000

Case - Indoor Small Area Coverage

Background

Traditional small-area blindness supplementation uses methods such as rectification of existing network, establishing new base stations, room divisions or additions, etc., Network construction is facing a long construction cycle and unsatisfied ROI so as a lower cost and easy deployment solution is urgent required.

Solution

Sunsea indoor small cell are adopted to solve the transmission and power supply problems through a network cable. The existing transmission resources can be flexibly selected and accessed from anytime and anywhere, which can meet various indoor small-area coverage.

Summary

Small-area or single-site deployment can achieve accurate indoor coverage and quickly fill blindness, which can effectively improve the surrounding network environment, quickly resolve indoor user complaints, provide protection for temporary indoor network capacity, and improve user voice and data experience.

SUISEA AIDT 日海智能

Case - Elevator Network Coverage Deployment

Background

The elevator signal of the building has always been the most obvious place for users to feel and it is also a battleground for operators. However, the high investment in the construction and the complex construction in the elevator shaft has always been a difficult problem.

Solution

This solution uses a Sunsea 125mW integrated small cell, which is transmitted between the elevator shafts through a wireless bridge and is accessed by broadband at the back end of the cell, which easily realizes a network cable + a small cell to complete an elevator coverage.

Summary

Effectively avoid complex wiring and construction in the elevator shaft, simple and fast deployment, effectively reduce the cost and quickly achieve accurate deployment of the elevator.

Traditional solution Source + feeder + passive device + antenna

SUNSEA AIDT 日海智能

Case - Underground Parking Lots Network Coverage

Background

Due to its special geographical location, underground parking lots have always been an important area covered by indoor signals. This scenario is usually empty, high network coverage cost and long investment recovery period.

Solution

This solution adopts 3 indoor integrated small cell, through simple network wiring, switch aggregation and POE power supply, to meet the wireless signal coverage of nearly 4,000 square meters of underground parking lots.

Summary

It is simple to deploy small cell for regional networking, saving investment on traditional sources, passive components, antennas and feeders. Flexible access and easy construction make the construction cost of wireless network coverage of the underground parking lot effectively reduced.

Solution

l	Jnderground parking	g lot
	Test result	
Attach suc	100.00%	
Downward FTP	RSRP	-68.3dBm
	Average SINR	30dB
	Average downlink throughput	88.6mbps
	Downlink peak value	93.9mbps
Uplink FTP	RSRP	-74.7dBm
	Average SINR	27.6dB
	Average uplink throughput	40.0mbps
	Downlink peak value	43.4mbps
Pir	30	
Small station ar succes	100.00%	
Small station and succes	Small station and macro station reselection success rate (10 times)	

Application Scenario 2 - Indoor hot spot blind spot

Application scenario

Street road, street shops, residential area, urban village, etc.

Application features

Outdoor integrated small cell can effectively improve the capacity of outdoor small area blind area and hot area. It can access to existing transmission resources, low cost, easy construction and deployment which effectively solve the difficulties of property, site shortage and emergency support scenarios. It is rapid deployment plan for light pole station, street site small area.

Application products

Sunlight 2000

SUISEA AIDT 日海智能

Case - Tower Pole Small Cell Integration

Background

Old-fashioned residential area with seven floors high on both sides, small space between buildings, sensitive property. The lack of base station sites has led to insufficient coverage of buildings, streets, and shops along the street.

Solution

Base on the street poles, utilize a cement pole + highgain directional plate antenna through the outdoor small cell.

Summary

Effectively address the sensitive issues of residential property and deep network coverage for street shops. After deployment, the download rate is twice as high as the original macro station which effectively improves RSRP in residential areas.

Place)	A	В	С	D	E	F	G
Before	Max.	-61.06	-83.31	-92	-112.3	-85.12	-68	-89.75
	Min.	-116.9	-119	-117.3	-128.2	-110.4	-109.5	-133.5
	Avg.	-93.29	-101.4	-107	-118.6	-96.93	-87.47	-108.7
RSRP test		11日時 月 第 一 第 一 第 一 第 一 第 一 第 一 第 一 第 一 二 四時 月 第 一 二 四時 月 第 一 5 一 5 一 5 一 5 一 5 一 5 一 5 一 5 一 5 一	① ① ① ① ① ① ① ① ① ① ① ① ① ③ ⑦	商银行24 SPP	(38)(1.61%) 105 (197)(8.55%) 100 (420)(17.80%) 95 (456)(19.33%) 95 (456)(19.33%) 95 (461)(28.02%) 95 (661)(28.02%) 95 (661)(28.02\%) 95 (661	月14-85年標理 月1-8-87-4 ()))))))))))))))))))	四 構造部 取得現態 原語(1) 成志動等道(品語) 第二定種該他傳書 八一「近義系和書」 二一一近義子和書」 記書前注 物方学校(系马框動)	を 取込み役は 取込み役は を用品の展 部様を与紙団) 地球村本 取込小 ¹ 多本地(あ马紙区)
After	Max. Min.	-53.25	-60.12 -101.7	-63.18	-71.81 -102.9	-67.25	-79.62 -81.12	-54.37 -94
	Avg.	-76.62	-80.52	-87.93	-84.95	-80.27	-80.39	-71.23
RSRP test	〒家巷校区(南) RSRP ● × < ● 110 - 100 - 000 - 95 - 85 - 70 ● × <	T) 王家前在 5 < x <= -105 5 < x <= -105 5 < x <= -105 5 < x <= -95 < x <= -85 < x <= -70 < x <= -50 -50	様得叫(千里 (0)(0.00%) (0)(0.00%) (1)(0.06%) (12(0.69%) (323)(18,49%) (970)(55.52%) (441)(25.24%) (441)(25.24%) (0)(0.00%)	家前街) 十家時 月 一 一 一 一 一 一 一 一 一 一 一 家 市 一 一 一 一 家 市 一 一 一 一	小双麻辣。 凤姐水煮(千 ① 凤娃 唐 訪市民政保育院	Kā 王章前御〕 引水煮 夏盛特色米粉)/店 (1) 翰林院专业书	西湖区妇幼 西湖区妇幼 西湖区妇3 保健院口器 眼镜朔店 篇益眼镜(东马毛 画话训

Case - Old Community Blind Supplement

Background

The residential district has a high population density and dense buildings, and it is difficult for the macro station to cover in depth. In addition, property negotiation is difficult and site selection is lacking.

Solution

Deploy multiple 1W integrated baseband, radio frequency and antenna small cell between residential buildings, and hang them outside the residential buildings for concealment. Utilize the original transmission resources to quickly organize network.

Summary

Effectively solve the problem of sensitive station construction in residential areas, greatly improve the RSRP in the coverage area. 100M download rate improves the user experience and perception.

Marco network		RSR	-84.31dBm	
	FIP downlink	SINR	7.4	
	throughput	Downlink throughput	52Mbps	
	FTP uplink throughput	RSR	-83.31dBm	
		SINR	18.4	
		Uplink throughput	36.1Mbps	
Station X	FTP downlink	RSR	-54.5dBm	
		SINR	30	
	throughput	Downlink throughput	97.7Mbps	
	FTP uplink throughput	RSR (dBm)	-54.06	
		SINR	30	
		Uplink throughput	34Mbps	

SUISEA AIDT

Β

海 智 能

Application Scenario 3 - Comprehensive Coverage

Application scenario

Campus, port, smart park and other enterprise private network coverage area.

Application features

The enterprise wireless private network covers a relatively large area, the traffic volume and data traffic are unevenly distributed, and the business is accompanied by tidal effects. Comprehensive coverage can be achieved with indoor, internal and external small base station equipment, which not only effectively solves the problem of wide area coverage but also focuses on high-traffic value areas for deep coverage requirements.

Application products

Sunlight 1000, Sunspeed2000, Sunpower3000

Case – Wide Area Coverage

Background

The army barracks area is in a blind area of wide area coverage, with overall RSRP of the barracks area is ≤-100dBm which cannot meet the daily voice and data traffic requirements in the barracks.

Solution

An integrated high-power outdoor small cell + high-gain plate-shaped directional antenna is used for directional coverage, which eliminates the need for a computer room environment and uses original installations such as concrete poles for field deployment.

Summary

Effectively solve user data and voice needs, further improve user perception, and greatly reduce supporting investment. Realize the need for accurate blind correction in the wide area and stimulate the release of data traffic in hot areas.

RSRP diagram Before

